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Abstract 

The Bore1 transform of the Espinosa-Ringwaid type cross section 
in theories having explicit mass parameters is considered. The nature 
and position of the leading singularity in the Bore1 transform variable 
6 are determined. 
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1 Introduction 

The Green functions with external particles in the instanton background have been 

investigated in relation to the anomalous baryon number violation in the standard model 

[l]. The cross section of two body scattering in the one-instanton sector in the standard 

model is given by 

C+xP(-53(g)) (1) 

where Q,, I&,,, are the weak coupling and the sphaleron energy respectively. As pointed 

out by several authors [2], this form of the cross section might suggest a shift of the 

position of the instanton singularity in the Bore1 transform variable 6 as a function of 

the energy. However, if it does shift, it would contradict ‘t Hooft’s original argument 

that the singularity position is universal [3]. Therefore, it would be interesting to find 

out the position and nature of the singularity associated with the instanton-induced 

cross section. 

In this note we consider theories having explicit dimensional parameters, and exclude 

QCD type interactions that have an infrared problem associated with the instanton size. 

Then, we can show that independently of the energy the leading singularity is at b = 1 

as for the vacuum tunnelling amplitude, and the nature of the singularity is determined 

by the interactions of infinitely far separatkd instanton and anti-instanton pairs. For 

the quantum mechanical double-well potential and the two-dimensional abelian Higgs 

model, the singularity is of branch-point type and its strength depends on the energy. 
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For the nonabelian Higgs model in three dimensions, the type of the singularity is an 

essential singularity. For the standard model, the singularity is of branch-point type and 

its strength is independent of the energy. 

2 Singularity in the Bore1 variable 

Let us consider a theory having a dimensionless coupling g and mass m. An extension to 

theories having more than one mass parameters will be straightforward. The Lagrangian 

is 

&J gw,m) 

with 4 representing generic fields. We assume that m is independent of g, and g can be 

always factored out of L by resealing C$ so that L is independent of g. We also assume 

that there is an exact instanton solution with the action 

so 
&= s (3) 

where So is a constant. 

We consider the Espinosa-Ringwald type cross section in the valley method approach 

[4] in which the imaginary part of the forward scattering amplitude is calculated in the 

instanton-anti-instanton background. In the valley method the instanton-induced cross 

section is 
Y 

exp{ ER’ - S,,l(mR’)} (4 
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where v is a model-dependent positive constant and SVol and E are the valley action and 

the c.m. energy of the system respectively. R is the distance between the instanton and 

anti-instanton pair. In the quantum mechnical double-well potential o is the transition 

rate between the vacua induced by excited states, and if E is replaced by the chemical 

potential it becomes the anomalous decay rate of dense baryonic matter[5]. R' is the 

saddle point of the exponential part in (4) and satisfies 

’ - &$ua’(“R)~R~R~ = ’ (5) 

where c = E/m. Defining the interaction energy V(mR) of an instanton and anti- 

instanton pair by 

S,,&nR) = 7 (1 - V(mR)) , (6) 

we can write (5) as 

z + V’(y(z)) = 0 (7) 

where z = c/z, with z = 2&/g and y = mR’. Note that V(oo) = 0. 

The Bore1 transform of (4) is defined by 

c?(b) = & J 
a+ioo 

a-&Xl 
ezb a(g) dz. (8) 

This definition of the Bore1 transform normalizes the singularity position of the vacuum 

amplitude to b = 1. Substituting (4) into (8) 

b(b) - Jexp(z(b - f(x)) + vlog z}dz (9) 
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with 

f(x) = 1 - XY(4 - VYW (10) 

To determine the leading singularity in the Bore1 variable b, (9) may be evaluated by 

the saddle point approximation. The equation for the saddle point z* is 

6 - f(x’(b)) + x’(b) f’(x’@)) + ; z’(b) = 0 (11) 

where z*(b) = c/z*(b), or 

6 - 1 + ; s’(b) t v (y@‘(b))) = 0 (12) 

using (10). The Bore1 transform of 0 is then 

G(b) - 
(z*)“+l 

Jm exp{z* (6 - f(x*Nl 

(z*)“+l 
Jm exp (-+ f’b’)) 

(q-(u+l) 

JF-+Z&Z++‘)) (13) 

using 

f’(x’) = -y(x*) (14) 

from (7) and (10). A n extra factor of z* in the pre-exponentional part is from the 

Gaussian determinant. Eq. (13) h s ows that the leading singularities can arise either at 

5* = 0 or y(x*) = 00. However, since in general V’(m) = 0 and V(y) is monotonically 

decreasing function, the solution of (7) must satisfy 

Y(O) = 00, (15) 
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and so the leading singularity can be only at x* = 0. Then (12) immediately tells 

us that the position of the singularity in the Bore1 variable b is at b = 1 as in the 

vacuum tunnelling case, and the nature of the singularity is determined by the interaction 

energy of the infintely far separated instanton and anti-instanton pair. In general, V(y) 

decreases either exponentially or in powers of l/y as y approaches infinity. In next two 

sections we discuss the nature of the singularity for the two asymptotic behavior of V(y). 

3 Exponentially decreasing potential 

Let us assume V is given by 

V(y) + 5 essy, 
Yk 

for y + a3 

where n is a positive integer and c, k are constants. The asymptotic behavior of V in 

the quantum mechanical double-well potential and the two dimensional abelian Higgs 

model follows (16) with n = 2, k = 0 and n = 1, k = l/2 respectively [6, 71. In the 

abelian Higgs model, the mass m must be understood as the minimum of the vector 

boson and Higgs masses. 

Substituting (16) into (7), we find 

y(x) = -klnx - : ln(ln k) -I- 0 (1)) for x+0. 

The solution of (12) using (16) and (7) gives 

x’(b) N 1 - b, for b M 1 
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Substitution of (17), (18) into (13) gives 

b(b) - (1 - 6) -(v+l+*) (In (1 ! a))-’ (19) 

near the singularity. This shows that the singularity is of branch-point type and the 

strength of the singularity depends on the energy. Note that the strength of the singu- 

larity is independent of the details of the potential in the Lagrangian. For example, in 

the quantum mechanical double-well potential, the nature of the singularity has nothing 

to do with the shape of the potential outside the classical vacua, and the dependence on 

the potential appears only through the mass m, which is nothing but the second deriva- 

tive of the potential at the classical vacua. In this sense, the nature of the singularity is 

universal. The universality of the singularity originates from the fact that the interaction 

energies of the infinitely far separated instanton and anti-instanton pairs are determined 

by the asymptotic form of the instanton solutions, which in turn is determined by the 

shape of the potential near the classical vacua. 

4 Power decreasing potential 

Now we consider the potential V decreasing in powers of l/y, 

C2 
V(Y) + yk’ for y + 00, W-8 

with k a positive number and c a constant. The interaction energy of the instanton and 

anti-instanton pair in the nonabelian Higgs model in three dimensions has the asymptotic 
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behavior in (20) with k = 1. The constant c is then the ‘t Hooft-Polyakov magnetic 

monopole charge. A parallel calculation as in sec. 3 gives 

and 

2k 
x*(b) = ($)qL (1 - b)? + . . . 

(21) 

(22) 

near the singularity. Terms neglected in (22) are irrelevant for the leading singularity. 

Substituting (21), (22) into (13) we get the Bore1 transform 

s(b) N (1 - b)-~(v+lw*) exp E 
( (lfb)+) 

- (23) 

nearb- 1. Therefore, b = 1 is an essential singularity. 

5 Constrained instanton case 

Until now, we have considered theories that have exact instanton solutions. Thus, our 

conclusion in the previous sections cannot be directly applied to theories such as the 

standard model that do not have exact instanton solutions. However, the modification 

needed is minimal. We illustrate the calculation in the standard model. 

As is well known, in the standard model there is no exact instanton solution. How- 

ever, when a constraint is introduced to restrict the quantum fluctuations to a scale p, 

there is an instanton-like solution, the so called constrained instanton [8]. Because of 

the extra scale, the valley action now depends on two parameters mR and p, where m 
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is the gauge boson mass. For simplicity, we assume the Weinberg angle vanishes so that 

mw = m,. 

The valley action can be written as 

&,l(mR,p) = 7 (I- V(P/R+R)) (24 

with So = 8n2 and g = g$ where gw is the SU( 2) g au g e coupling. The anomalous cross 

section is similarly given by (4),(6) with V(mR*) replaced by V(p*,mR*). The saddle 

point equation for ?P and p* corresponding to (7) is then 

x + -$wX),Y(2)) = 0 

$w4,Y0) = 0 (25) 

where the definition of x,y are same as in sec.2 and w = p*/R’. Truncating the Higgs 

contribution to the valley action to the leading order, V can be written as [9] 

V(w, y) = U(w) - ~w2y2 (26) 

where U is the valley action of the pure SU(2) gauge theory. Then (25) becomes 

x-w(x)2y(x) = 0 

U’(w(x)) - w(x)y(x)2 = 0. (27) 

From (27) it is obvious that y(x) can not b&divergent for finite x since U’(w) is finite. 

The saddle point equation for z* corresponding to (12) is similarly given by 

6 - 1 t ; x*(b) + V(w(x*(b)), y(x*(b))) = 0, 
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and the Bore1 transform of the anomalous cross section is exactly given by (13). There- 

fore, the leading singularity arises at z* = 0. To find out the position of the singularity, 

we use the asymptotic form of U(w) for l/w -+ 00 [9], 

U(w) + 6 w4, for w + 0. w-9 

The solution of (27) near x M 0 is then 

1 
W- y” x3. 

From (28) we see that the singularity is at b = 1. Solving (28) near b = 1 

x-l-b, for bN 1. (31) 

Substituting (31) into (13) we have 

i+(b) - (1 - b)-(“+‘), for b-l. (32) 

The position and nature of the singularity are essentially same as those of the vacuum 

amplitude. Since y, w + 0 as x + 0, the truncation of the Higgs contribution in (26) to 

the leading order does not affect the nature of the singularity. 

9 



6 Corrections to the Gaussian approximation 

We consider in this section the corrections to the Gaussian approximation we have taken 

in sec.2, and show that they do not change our conclusions on the nature of the singu- 

larity. The corrections to the Gaussian approximation can be calculated conveniently in 

the Feynman diagram technique. Expanding 

F(z) = z (b - f(x)) t v log z 

in (9) about the saddle point z* 

F(z) = 2 $F(‘)(z’) (z - Zf)i, 
id * 

where F(‘) is the i-th order derivative of F, we have the propagator 

and the vertex functions 

AFti)( i = 3,4, - - - 

(33) 

(34) 

(36) 

for the vertices with i number of legs. We call this vertex the i-th vertex. Now using 

(14), it can be easily shown that 

F(4(z*) = (x*)i 2 cj . (x*)j y(j)(x=)e 
(37) 

j=O 

where cj are constants and y(j)(x) is the j-th order derivative of Y(X). By definition, 

y(O)(x) is supposed to be a constant. The corrections to the Gaussian approximation are 
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given by the connected vacuum bubble diagrams. Let us consider an arbitrary connected 

bubble diagram, which we call B, having ni(# 0) number of the i-th vertices. Then 

1 . 

ii i *sni= 
c I (38) 

where I is the number of the internal lines. An evaluation of the bubble diagram B with 

(35), (36) gives 

B- 
ni [F”‘(“*)]“’ 

[F(2)(z*)]’ 
N ni [(x*)+ (Cj+i Cj . ( x*>j y(j)(x*)) “;I 

[(x*J2 (: - x* YYX’))] 
I 

= 
ni [Ciii Cj ’ (x*)i y(j)(,*)]“i 

[; - x* y’(x*)lZ * 

Now for the exponentially decreasing potential in sec.3, we have from (17) 

(39) 

(x’)i y(i)(x*) w O( 1) , for x* + 0 (40) 

for all i. Thus B N O(1) near the singularity, and so the corrections to the Gaussian 

approximation modify only the overall factor of (13) and (19), and do not affect the 

nature of the singularity. 

For the case of the power decreasing potential in sec.4, we have 

(x*)iy(i)(x*) N y(x*) N (x*)-L+1 for x* + 0 (41) 

from (21). Substituting (41) into (39) 

B N (x*)&(I-Cni) 

= (x*)0 (42) 
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where 

P = &(I - c nj) > 0. (43) 

Therefore, 

B-b0 as z*+o (44 

This implies that the Gaussian approximation becomes exact near the singularity. This 

can be seen directly with (34) by resealing 

= - t* + d&--q (2 - 2’). 

Then the vertex functions in (36) scale as 

1 F(‘)(P) 

i! [qyz*)]” ’ 

(45) 

(46) 

which can be checked using (37), (41) to approach zero near the singularity. Similarly, 

it can be shown that for the constrained instanton case, the corrections are of order one 

near the singularity and do not affect its nature. 

I am thankful for discussions with K. Ellis. I am also very grateful to Eric Laenen 

for reading the manuscript. 
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